x^2-17=4-10x^2

Simple and best practice solution for x^2-17=4-10x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2-17=4-10x^2 equation:



x^2-17=4-10x^2
We move all terms to the left:
x^2-17-(4-10x^2)=0
We get rid of parentheses
x^2+10x^2-4-17=0
We add all the numbers together, and all the variables
11x^2-21=0
a = 11; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·11·(-21)
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{231}}{2*11}=\frac{0-2\sqrt{231}}{22} =-\frac{2\sqrt{231}}{22} =-\frac{\sqrt{231}}{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{231}}{2*11}=\frac{0+2\sqrt{231}}{22} =\frac{2\sqrt{231}}{22} =\frac{\sqrt{231}}{11} $

See similar equations:

| (19.95+0.99)m+65.32=144.67 | | 8k-6+6k=8k+5k-12 | | -4(1x+4x)=-37-5x | | -638=22v | | 22x^2-3x-6x^2+3x+49=0 | | -5y+3(9y-5)=2+1(-9-y) | | 9x-3=7+9x | | 80+20*x=450 | | 10x+3=8x11 | | 35=-5-10x | | 2(x+60)-(x+50)+60=210 | | 14k=168 | | 45-2c+4=4(c+5)+c | | 14-t=17 | | 16+7v=-2(8v-8) | | f(10)=6(10)-42 | | x/(-7)=2.1 | | 4x+3=5×-4 | | 462=-21x | | -3+(5/3x)=4 | | -12=5(v=6)-7v | | 2x+8+5x=10 | | 18y=7y-6 | | 0.8m-500=4,650 | | 7(x-5)=9(x-3) | | 2=-9n+11=8 | | m=32-27 | | (5y-37)=(3y+25) | | m-21/4-6m-17/5=1 | | h-6/4=3 | | 6x(x-23)=180 | | 7n+5=4/3 |

Equations solver categories